Imagen de portada de Amazon
Imagen de Amazon.com

The elements of statistical learning : data mining, inference, and prediction / Trevor Hastie, Robert Tibshirani, Jerome Friedman.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Edición: 2a edición, 7a reimpresión corregidaDescripción: 1 online resource (xxii, 745 pages) : color illustrationsTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9780387848587
  • 0387848584
  • 9781282126749
  • 1282126741
Tema(s): Género/Forma: Formatos físicos adicionales: Print version:: Elements of statistical learning.Clasificación CDD:
  • 006.3/1 22 22
Clasificación LoC:
  • Q325.75 .H37 2009eb
Otra clasificación:
  • 31.73
  • 54.72
  • O212-39
  • TP181
  • CM 4000
  • QH 231
  • SK 830
  • SK 840
  • ST 530
  • DAT 708f
  • MAT 620f
Recursos en línea:
Contenidos:
1. Introduction -- 2. Overview of supervised learning -- 3. Linear methods for regression -- 4. Linear methods for classification -- 5. Basis expansions and regularization -- 6. Kernel smoothing methods -- 7. Model assessment and selection -- 8. Model inference and averaging -- 9. Additive models, trees, and related methods -- 10. Boosting and additive trees -- 11. Neural networks -- 12. Support vector machines and flexible discriminants -- 13. Prototype methods and nearest-neighbors -- 14. Unsupervised learning -- 15. Random forests -- 16. Ensemble learning -- 17. Undirected graphical models -- 18. High-dimensional problems: p>> N.
Revisión: "During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics."--Jacket.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Notas Fecha de vencimiento Código de barras
Libro electrónico Libro electrónico Biblioteca José Luis Bobadilla Colección de Ebook 006.3/1 22 (Navegar estantería(Abre debajo)) Ej. 1 Disponible Bibliografía de las UDs eB-056187

Second edition corrected at 7th printing in 2013.

Incluye referencias bibliográficas e index (páginas 699-727)

1. Introduction -- 2. Overview of supervised learning -- 3. Linear methods for regression -- 4. Linear methods for classification -- 5. Basis expansions and regularization -- 6. Kernel smoothing methods -- 7. Model assessment and selection -- 8. Model inference and averaging -- 9. Additive models, trees, and related methods -- 10. Boosting and additive trees -- 11. Neural networks -- 12. Support vector machines and flexible discriminants -- 13. Prototype methods and nearest-neighbors -- 14. Unsupervised learning -- 15. Random forests -- 16. Ensemble learning -- 17. Undirected graphical models -- 18. High-dimensional problems: p>> N.

"During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics."--Jacket.

WorldCat record variable field(s) change: 650

No hay comentarios en este titulo.

para colocar un comentario.
INSTITUTO NACIONAL DE SALUD PÚBLICA, MÉXICO - ALGUNOS DERECHOS RESERVADOS
Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada de Los Pinos y Caminera C.P. 62100, Cuernavaca, Mor. México. Tel (777) 329300